Thermodynamics

ME232

DR. MAHMOOD SHAKER
Faculty of Mechanical Engineering UNIVERSITY OF BASRAH BASRAH, IRAQ

FIRST LAW OF THERMODYNAMICS

ENERGY ANALYSIS OF CLOSED SYSTEM

First Law of Thermodynamics

The First Law is usually referred to as the Law of Conservation of Energy, i.e. energy can neither be created nor destroyed, but rather transformed from one state to another.

* The energy balance is maintained within the system being studied/defined boundary.
* The various energies associated are then being observed as they cross the boundaries of the system.

Energy Balance for Closed System

Reference Plane, $z=0$

$$
\binom{\text { Total energy }}{\text { entering the system }}-\binom{\text { Total energy }}{\text { leaving the system }}=\binom{\text { The change in total }}{\text { energy of the system }}
$$

or

$$
E_{\text {in }}-E_{\text {out }}=\Delta E_{\text {system }}
$$

- According to classical thermodynamics

$$
Q_{\text {net }}-W_{\text {net }}=\Delta E_{\text {system }}
$$

\square The total energy of the system, $E_{\text {system }}$, is given as

$$
\begin{aligned}
& E=\text { Internal energy }+ \text { Kinetic energy }+ \text { Potential energy } \\
& E=U+K E+P E
\end{aligned}
$$

\square The change in stored energy for the system is

$$
\Delta E=\Delta U+\Delta K E+\Delta P E
$$

\square The first law of thermodynamics for closed systems then can be written as

$$
Q_{n e t}-W_{n e t}=\Delta U+\Delta K E+\Delta P E
$$

\square If the system does not move with a velocity and has no change in elevation, the conservation of energy equation is reduced to

$$
Q_{n e t}-W_{n e t}=\Delta U
$$

The first law of thermodynamics can be in the form of

$$
\begin{align*}
& q_{n e t}-w_{n e t}=\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \tag{kJ/kg}\\
& Q_{n e t}-W_{n e t}=m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \tag{kJ}
\end{align*}
$$

\square For a constant volume process,

$$
\begin{aligned}
Q_{\text {net }}-W_{n e t} & =m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \\
Q_{\text {net }} & =m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right)
\end{aligned}
$$

\square For a constant pressure process,

$$
\begin{gathered}
Q_{n e t}-W_{n e t}=m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \\
Q_{\text {net }}-P\left(V_{2}-V_{1}\right)=m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \\
Q_{\text {net }}=m\left(u_{2}-u_{1}+P\left(V_{2}-V_{1}\right)+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \\
Q_{n e t}=m\left(h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right)
\end{gathered}
$$

Example of Closed Systems

Rigid tank

Piston cylinder

Example 3.1

A closed system of mass 2 kg undergoes an adiabatic process. The work done on the system is 30 kJ . The velocity of the system changes from $3 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$. During the process, the elevation of the system increases 45 meters. Determine the change in internal energy of the system.

* Rearrange the equation

$$
\begin{aligned}
& Q_{\text {net }}-W_{\text {net }}=m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \\
& -W_{\text {net }}=m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \\
& -(-30)=2 \Delta u+2\left(\frac{15^{2}-3^{2}}{2000}\right)+2\left(\frac{9.81(45)}{1000}\right)
\end{aligned}
$$

$$
\Delta u=\underline{14.451 \mathrm{~kJ} \text { Ans.. }}
$$

Solution:

* Energy balance,

$$
Q_{n e t}-W_{n e t}=m\left(u_{2}-u_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right)
$$

Example 3.2

Steam at 1100 kPa and 92 percent quality is heated in a rigid container until the pressure is 2000 kPa . For a mass of 0.05 kg , calculate the amount of heat supply (in kJ) and the total entropy change (in $\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$).

Solution:

State 1

$$
\begin{aligned}
& \text { at } \quad P_{1}=1100 \mathrm{kPa}, x_{1}=0.92 \\
& \qquad \begin{array}{l}
v_{1}=v_{f 1}+x_{1} v_{f g 1} \\
\quad=0.00113+0.92(0.17753-0.001133) \\
\quad=0.1634 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
u_{1} & =u_{f, 1}+x_{1} u_{f g, 1} \\
& =779.78+0.92(1805.7) \\
& =2441.024 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
s_{1} & =s_{f, 1}+x_{1} s_{f g, 1} \\
& =2.1785+0.92(4.3735) \\
& =6.20212 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{aligned}
$$

* For a rigid container,

$$
v_{2}=v_{l}=0.1634 \mathrm{~m}^{3} / \mathrm{kg}
$$

State 2

at $P_{2}=2000 \mathrm{kPa}, v_{2}=0.1634 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$

v	u	s
0.15122	2945.9	7.1292
0.1634	u_{2}	s_{2}
0.17568	3116.9	7.4337

$$
\begin{aligned}
u_{2} & =2945.9+\left(\frac{0.1634-0.15122}{0.17568-0.15122}\right)(3116.9-2945.9) \\
& =3030.42 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

$$
\begin{aligned}
s_{2} & =7.1292+\left(\frac{0.1634-0.15122}{0.17568-0.15122}\right)(7.4337-7.1292) \\
& =7.2790 \frac{\mathrm{~kJ}}{\mathrm{~kg} . \mathrm{K}}
\end{aligned}
$$

* Amount of heat supplied, Q

$$
\begin{aligned}
Q & =m\left(u_{2}-u_{1}\right) \\
& =0.05(3030.42-2441.9) \\
& =\underline{29.43 \mathrm{~kJ}}
\end{aligned}
$$

* The change in entropy, $\Delta \mathrm{s}$

$$
\begin{aligned}
\Delta s & =s_{2}-s_{1} \\
& =7.2790-6.204 \\
& =1.075 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{aligned}
$$

Example 3.3

A rigid tank is divided into two equal parts by a partition. Initially one side of the tank contains 5 kg water at 200 kPa and $25^{\circ} \mathrm{C}$, and the other side is evacuated. The partition is then removed, and the water expands into the entire tank. The water is allowed to exchange heat with its surroundings until the temperature in the tank returns to the initial value of $25^{\circ} \mathrm{C}$. Determine (a) the volume of the tank (b) the final pressure (c) the heat transfer for this process.

Solution:

State 1

$\left.\begin{array}{c}P_{1}=200 \mathrm{kPa}, \\ T_{1}=25^{\circ} \mathrm{C}\end{array}\right\} \begin{aligned} & T_{1}<T_{\text {sat }} \text { Comp. liquid } \\ & v_{1}=v_{f @ 25^{\circ} \mathrm{C}}=0.001003 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\end{aligned}$
initial volume of half resevoir

$$
\begin{aligned}
V_{1} & =m v \\
& =5(0.001003) \\
& \square 0.005 \mathrm{~m}^{3}
\end{aligned}
$$

* The initial volume for entire tank

$$
\begin{aligned}
V_{\text {resevoir }} & =2(0.005) \\
& =\underline{0.01 m^{3}}
\end{aligned}
$$

The final pressure

State 2

$$
\left.\begin{array}{c}
T_{2}=25^{\circ} C \\
v_{2}=\frac{0.01}{5}=0.002 \frac{m^{3}}{k g}
\end{array}\right\} \begin{gathered}
v_{f}=0.001003 \frac{m^{3}}{k g} \\
v_{g}=43.34 \frac{m^{3}}{k g}
\end{gathered}
$$

check region!
$v_{f}<v<v_{g} \rightarrow$ saturated mixture
then $: P_{2}=P_{\text {sat }}=\underline{\underline{3.169 \mathrm{kPa}}}$

The heat transfer for this process
$Q_{\text {net }}-W_{\text {net }}=m(\Delta u+\Delta k e+\Delta P e)$
$Q_{\text {net }}-$ Nex $=m(\Delta u+\Delta k e+\Delta$ Re $)$
$Q_{\text {net }}=m \Delta u=m\left(u_{2}-u_{1}\right)$

$$
\begin{align*}
\longrightarrow u_{1} & =u_{f @ 25^{\circ} \mathrm{C}}:=104.83 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
u_{2} & =u_{f}+x_{2} u_{f g} \\
x_{2} & =\frac{v_{2}-v_{f}}{v_{f g}} \\
& =2.3 \times 10^{-5} \\
\therefore u_{2} & =104.83+2.3 \times 10^{-5} \tag{2304.3}\\
& =104.88 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{align*}
$$

Then:

$$
\begin{aligned}
Q_{\text {net }} & =5(104.88-104.83) \\
& =\underline{\underline{0.25 \mathrm{~kJ}}}
\end{aligned}
$$

+ve sign indicates heat transfer into the system.

Supplementary Problems 1

1. Two tanks are connected by a valve. Tank A contains 2 kg of carbon monoxide gas at $77^{\circ} \mathrm{C}$ and 0.7 bar. Tank B holds 8 kg of the same gas at $27^{\circ} \mathrm{C}$ and 1.2 bar . Then the valve is opened and the gases are allowed to mix while receiving energy via heat transfer from the surrounding. The final equilibrium temperature is found to be $42^{\circ} \mathrm{C}$. Determine (a) the final pressure (b) the amount of heat transfer. Also state your assumption.

$$
\left[P_{2}=105 \mathrm{kPa}, Q=+37.25 \mathrm{~kJ}\right]
$$

2. A piston cylinder device contains 0.2 kg of water initially at 800 kPa and $0.06 \mathrm{~m}^{3}$. Now 200 kJ of heat is transferred to the water while its pressure is held constant. Determine the final temperature of the water. Also, show the process on a T-V diagram with respect to saturation lines.
[$721.1^{\circ} \mathrm{C}$]

Supplementary Problems 1

3. A piston-cylinder device contains 6 kg of refrigerant-134a at 800 kPa and $50^{\circ} \mathrm{C}$. The refrigerant is now cooled at constant pressure until it exist as a liquid at $24^{\circ} \mathrm{C}$. Show the process on T-v diagram and determine the heat loss from the system. State any assumption made.
[1210.26 kJ$]$
4. A $0.5 \mathrm{~m}^{3}$ rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is now transferred to the refrigerant until the pressure reaches 800 kPa . Determine (a) the mass of the refrigerant in the tank and (b) the amount of heat transferred. Also, show the process on a P-v diagram with respect to saturation lines.

$$
\left[\begin{array}{lll}
12.3 & \mathrm{~kg}, & 2956.2
\end{array}\right.
$$

5. Kh insulated tank is divided into two parts by a partition. One part of the tank contains 6 kg of an ideal gas at $50^{\circ} \mathrm{C}$ and 800 kPa while the other part is evacuated. The partition is now removed, and the gas expands to fill the entire tank. Determine the final temperature and the pressure in the tank.

$$
\left[50^{\circ} \mathrm{C}, 400 \mathrm{kPa}\right]
$$

Closed System First Law of a Cycle

Some thermodynamic cycle composes of processes in which the working fluid undergoes a series of state changes such that the final and initial states are identical.

For such system the change in internal energy of the working fluid is zero.

* The first law for a closed system operating in a thermodynamic cycle becomes

$$
\begin{aligned}
Q_{n e t}-W_{n e t} & =\Delta U_{c y c l e} \\
Q_{n e t} & =W_{n e t}
\end{aligned}
$$

Boundary Works

According to a law of $P V^{n}=$ constant

No	Value of n	Process	Description	Result of IGL
1	∞	isochoric	constant volume $\left(\mathrm{V}_{1}=\mathrm{V}_{2}\right)$	$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
2	0	isobaric	constant pressure $\left(\mathrm{P}_{1}=\mathrm{P}_{2}\right)$	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
3	1	iso thermal	constant temperature $\left(\mathrm{T}_{1}=\mathrm{T}_{2}\right)$	$P_{1} V_{1}=P_{2} V_{2}$
4	$1<\mathrm{n}<\gamma$	polytropic	-none-	$\frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{n}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{n}{n-1}}$
5	γ	isentropic	constant entropy $\left(\mathrm{S}_{1}=\mathrm{S}_{2}\right)$	P_{2}

V Various forms of work are expressed as follows

Process	Boundary Work
isochoric	$W_{12}=P\left(V_{2}-V_{1}\right)=0$
isobaric	$W_{12}=P\left(V_{2}-V_{1}\right)$
iso thermal	$W_{12}=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}$
polytropic	$W_{12}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}$
isentropic	

Example 3.4

Sketch a P-V diagram showing the following processes in a cycle

Process 1-2: isobaric work output of 10.5 kJ from an initial volume of 0.028 m^{3} and pressure 1.4 bar,
Process 2-3: isothermal compression, and
Process 3-1: isochoric heat transfer to its original volume of $0.028 \mathrm{~m}^{3}$ and pressure 1.4 bar.

Calculate (a) the maximum volume in the cycle, in m^{3}, (b) the isothermal work, in kJ , (c) the net work, in kJ , and (d) the heat transfer during isobaric expansion, in kJ .

Solution:

- Process by process analysis,

$$
\begin{array}{r}
\text { Section } 1-2(\text { isobaric }) \\
W_{12}=P\left(V_{2}-V_{1}\right)=10.5 \\
140\left(V_{2}-0.028\right)=10.5 \\
V_{2}=0.103 \mathrm{~m}^{3}
\end{array}
$$

The isothermal work

Section2-3(isothermal)

$$
\begin{aligned}
& P_{2} V_{2}=P_{3} V_{3} \\
& P_{3}=\left(\frac{0.103}{0.028}\right)(140)=515 \mathrm{kPa} \\
& \rightarrow W_{23}=P_{2} V_{2} \ln \frac{V_{3}}{V_{2}} \\
& \quad=140(0.103) \ln \left(\frac{0.028}{0.103}\right) \\
& \quad=\underline{\underline{-18.78 \mathrm{~kJ}}}
\end{aligned}
$$

* The net work

$$
\begin{aligned}
& \text { Section 3-1(isochoric) } \\
& \begin{array}{l}
\begin{aligned}
W_{31}= & 0 \\
W_{\text {net }} & =W_{12}+W_{23}+W_{31} \\
& =10.5-18.78 \\
& =-8.28 \mathrm{~kJ}
\end{aligned}
\end{array} . \begin{array}{l}
\underline{\underline{-1}}
\end{array}
\end{aligned}
$$

Example 3.5

Abstract

A fluid at 4.15 bar is expanded reversibly according to a law $\mathrm{PV}=$ constant to a pressure of 1.15 bar until it has a specific volume of $0.12 \mathrm{~m}^{3} / \mathrm{kg}$. It is then cooled reversibly at a constant pressure, then is cooled at constant volume until the pressure is 0.62 bar ; and is then allowed to compress reversibly according to a law $P V^{n}=$ constant back to the initial conditions. The work done in the constant pressure is 0.525 kJ , and the mass of fluid present is 0.22 kg . Calculate the value of n in the fourth process, the net work of the cycle and sketch the cycle on a P-V diagram.

Solution:

* Process by process analysis,

$$
\begin{aligned}
& \text { Section } 1-2(\text { isothermal }) \\
& P_{1} V_{1}=P_{2} V_{2} \\
& V_{1}=\left(\frac{115}{415}\right) 0.22(0.12) \\
&=0.00732 \mathrm{~m}^{3} \\
& \begin{aligned}
W_{12} & =P_{1} V_{1} \ln \frac{V_{2}}{V_{1}} \\
& =415(0.00732) \ln \frac{0.0264}{0.00732} \\
& =3.895 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Section } 2-3(\text { isobaric }) \\
& W_{23}=P\left(V_{3}-V_{2}\right)=0.525 \mathrm{~kJ} \\
& V_{3}=\frac{0.525}{115}+0.0264 \\
& \quad=0.03097 \mathrm{~m}^{3}
\end{aligned}
$$

Section 3-4(isochoric)

$$
W_{34}=0
$$

Section 4-1(PolytroPic)

$$
\begin{aligned}
& \frac{P_{4}}{P_{1}}=\left(\frac{V_{1}}{V_{4}}\right)^{n} \\
& \frac{62}{415}=\left(\frac{0.00732}{0.03097}\right)^{n} \\
& \ln 0.1494=n \ln 0.2364
\end{aligned}
$$

$$
\begin{aligned}
& n=\underline{\underline{1.3182}} \\
& W_{41}=\frac{P_{1} V_{1}-P_{4} V_{4}}{1-n} \\
&= \frac{415(0.0072)-62(0.03097)}{1-1.3182} \\
&=-3.5124 \mathrm{~kJ}
\end{aligned}
$$

The net work of the cycle

$$
\begin{aligned}
W_{\text {net }} & =W_{12}+W_{23}+W_{34}+W_{41} \\
& =0.9076 \mathrm{~kJ}
\end{aligned}
$$

Supplementary Problems 2

1. A mass of 0.15 kg of air is initially exists at 2 MPa and $350^{\circ} \mathrm{C}$. The air is first expanded isothermally to 500 kPa , then compressed polytropically with a polytropic exponent of 1.2 to the initial state. Determine the boundary work for each process and the net work of the cycle.
2. 0.078 kg of a carbon monoxide initially exists at 130 kPa and $120^{\circ} \mathrm{C}$. The gas is then expanded polytropically to a state of 100 kPa and $100^{\circ} \mathrm{C}$. Sketch the P-V diagram for this process. Also determine the value of n (index) and the boundary work done during this process.
[1.248, 1.855 kJ$]$
3. Two kg of air experiences the threeprocess cycle shown in Fig. 3-14. Calculate the net work.

Fig. 3-14
4. A system contains $0.15 \mathrm{~m}^{3}$ of air pressure of 3.8 bars and $150^{\circ} \mathrm{C}$. It is expanded adiabatically till the pressure falls to 1.0 bar. The air is then heated at a constant pressure till its enthalpy increases by 70 kJ . Sketch the process on a P-V diagram and determine the total work done.

Use $\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and $\mathrm{c}_{\mathrm{v}}=0.714 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

FIRST LAW OF THERMODYNAMICS

MASS \& ENERGY ANALYSIS OF CONTROL VOLUME

Conservation of Mass

$>$ Conservation of mass is one of the most fundamental principles in nature. We are all familiar with this principle, and it is not difficult to understand it!
$>$ For closed system, the conservation of mass principle is implicitly used since the mass of the system remain constant during a process.
> However, for control volume, mass can cross the boundaries. So the amount of mass entering and leaving the control volume must be considered.

Mass and Volume Flow Rates

$>$ Mass flow through a cross-sectional area per unit time is called the mass flow rate. Note the dot over the mass symbol indicates a time rate of change. It is expressed as

$$
\dot{m}=\int \rho V \cdot d A
$$

$>$ If the fluid density and velocity are constant over the flow crosssectional area, the mass flow rate is

$$
\begin{aligned}
& \dot{m}=\rho A V=\frac{A V}{v} \\
& \text { wherev }=\frac{1}{\rho} \\
& \text { viscalled specificvoulme }
\end{aligned}
$$

Principal of Conservation of Mass

$>$ The conservation of mass principle for a control volume can be expressed as

$$
\dot{m}_{i n}-\dot{m}_{o u t}=\dot{m}_{C V}
$$

$>$ For a steady state, steady flow process the conservation of mass principle becomes

$$
\dot{m}_{i n}=\dot{m}_{o u t} \quad(\mathrm{~kg} / \mathrm{s})
$$

Flow Work \& The Energy of a Flowing Fluid

> As the fluid upstream pushes mass across the control volume, work done on that unit of mass is

$$
\begin{aligned}
& \delta W_{\text {flow }}=F d L=F d L \frac{A}{A}=P d V=P v \delta m \\
& \delta w_{\text {flow }}=\frac{\delta W_{\text {flow }}}{\delta m}=P v
\end{aligned}
$$

Total Energy of a Flowing Fluid

$>$ The total energy carried by a unit of mass as it crosses the control surface is the sum of the internal energy + flow work + potential energy + kinetic energy

$$
\sum e n e r g y=u+P v+\frac{V^{2}}{2}+g z=h+\frac{V^{2}}{2}+g z
$$

$>$ The first law for a control volume can be written as

$$
\dot{Q}_{\text {net }}-\dot{W}_{\text {net }}=\sum_{\text {out }} \dot{m}_{\text {out }}\left(h_{\text {out }}+\frac{V_{\text {out }}^{2}}{2}+g z_{\text {out }}\right)-\sum_{\text {in }} \dot{m}_{\text {in }}\left(h_{\text {in }}+\frac{V_{\text {in }}{ }^{2}}{2}+g z_{\text {in }}\right)
$$

Total Energy of a Flowing Fluid

$>$ The steady state, steady flow conservation of mass and first law of thermodynamics can be expressed in the following forms

$$
\begin{gather*}
q_{n e t}-w_{n e t}=\left(h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \tag{kJ/kg}\\
Q_{\text {net }}-W_{n e t}=m\left(h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \tag{kJ}\\
\dot{Q}_{n e t}-\dot{W}_{n e t}=\dot{m}\left(h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2000}+\frac{g\left(z_{2}-z_{1}\right)}{1000}\right) \tag{kW}
\end{gather*}
$$

Steady-flow Engineering Devices

Nozzle \& Diffuser

[Nozzle - device that increases the velocity fluid at the expense of pressure.

- Diffuser - device that increases pressure of a fluid by slowing it down.
- Commonly utilized in jet engines, rockets, space-craft and even garden hoses.
- $\mathrm{Q}=0$ (heat transfer from the fluid to surroundings very small

- $\mathrm{W}=0$ and $\triangle \mathrm{PE}=0$
\square Energy balance (nozzle \& diffuser):

$$
\begin{gathered}
\dot{Q}_{\text {in }}+\dot{W}_{\text {in }}+\sum_{\text {in }} \dot{m}_{\text {in }}\left(h_{\text {in }}+\frac{V_{\text {in }}{ }^{2}}{2}+g z_{\text {in }}\right)=\dot{Q}_{\text {out }}+\dot{W}_{\text {out }}+\sum_{\text {out }} \dot{m}_{\text {out }}\left(h_{\text {out }}+\frac{V_{\text {out }}{ }^{2}}{2}+g z_{\text {out }}\right) \\
\dot{m}_{\text {in }}\left(h_{\text {in }}+\frac{V_{\text {in }}{ }^{2}}{2}\right)=\dot{m}_{\text {out }}\left(h_{\text {out }}+\frac{V_{\text {out }}{ }^{2}}{2}\right) \\
\left(h_{1}+\frac{V_{1}^{2}}{2}\right)=\left(h_{2}+\frac{V_{2}^{2}}{2}\right)
\end{gathered}
$$

Example 3.6

Steam at $0.4 \mathrm{MPa}, 300^{\circ} \mathrm{C}$, enters an adiabatic nozzle with a low velocity and leaves at 0.2 MPa with a quality of 90%. Find the exit velocity.

Solution:

State 1

$P_{1}=0.4 \mathrm{MPa}$
$P_{2}=0.2 M P a$
$T_{1}=300^{\circ} \mathrm{C}$
$x_{2}=0.9$
$V_{1} \square 0$

* Simplified energy balance:

$$
\left(h_{1}+\frac{V_{1}^{\prime 2}}{2}\right)=\left(h_{2}+\frac{V_{2}^{2}}{2}\right)
$$

State 1

$$
\left.\begin{array}{c}
P_{1}=0.4 \mathrm{MPa} \\
T_{1}=300^{\circ} \mathrm{C}
\end{array}\right\} \begin{gathered}
h_{1}=3067.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
(\text { sup erheated })
\end{gathered}
$$

State 2

$$
\left.\begin{array}{c}
P_{2}=0.2 M P a \\
x_{2}=0.9
\end{array}\right\} \begin{aligned}
& h_{2}=h_{f}+x_{2} h_{f g} \\
& h_{2}=2486.1 \frac{k J}{k g}
\end{aligned}
$$

* Exit velocity:

$$
\begin{aligned}
V_{2} & =\sqrt{2000(3067.1-2486.1)} \\
& =1078 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example 3.7

Air at $10^{\circ} \mathrm{C}$ and 80 kPa enters the diffuser of a jet engine steadily with a velocity of $200 \mathrm{~m} / \mathrm{s}$. The inlet area of the diffuser is $0.4 \mathrm{~m}^{2}$. The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine (a) the mass flow rate of the air and (b) the temperature of the air leaving the diffuser.

State 1

State 2

$$
\begin{aligned}
& P_{1}=80 \mathrm{kPa} \\
& T_{1}=10^{\circ} \mathrm{C} \\
& V_{1}=200 \mathrm{~m} / \mathrm{s} \\
& A_{1}=0.4 \mathrm{~m}^{2}
\end{aligned}
$$

Solution:

* Simplified energy balance:

$$
\left(h_{1}+\frac{V_{1}^{2}}{2}\right)=\left(h_{2}+\frac{V_{2}^{z^{0}}}{2}\right)
$$

* From Ideal Gas Law:

$$
v_{1}=\frac{R T_{1}}{P_{1}}=1.015 \frac{m^{3}}{k g}
$$

Mass flow rate

$$
\begin{aligned}
\dot{m} & =\frac{1}{v_{1}} V_{1} A_{1} \\
& =\left(\frac{1}{1.015}\right)(200)(0.4) \\
& =\underline{\underline{78.8} \frac{\mathrm{~kg}}{\mathrm{~s}}}
\end{aligned}
$$

Enthalpy at state 1

$$
\begin{aligned}
h_{1} & =C_{p} T_{1}=1.005(283) \\
& =284.42 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

From energy balance:

$$
\begin{aligned}
h_{2} & =h_{1}+\frac{V_{1}^{2}}{2000} \\
& =284.42+\frac{200^{2}}{2000} \\
& =304.42 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
T_{2} & =\frac{h_{2}}{C_{p}} \\
& =\frac{304.42}{1.005} \\
& =302.9 \mathrm{~K}
\end{aligned}
$$

Turbine \& Compressor

Turbine control volume

Steady-Flow Compressor
\square Turbine - a work producing device through the expansion of a fluid.
\square Compressor (as well as pump and fan) - device used to increase pressure of a fluid and involves work input.
$\square \mathrm{Q}=0$ (well insulated), $\Delta \mathrm{PE}=0, \Delta \mathrm{KE}=0$ (very small compare to Δ enthalpy).

- Energy balance: for turbine

$$
\begin{aligned}
\dot{Q}_{\text {in }}+\dot{W}_{\text {in }}+\sum_{\text {in }} \dot{m}_{\text {in }}\left(h_{\text {in }}+\frac{V_{\text {in }}{ }^{2}}{2}+g z_{\text {in }}\right) & =\dot{Q}_{\text {out }}+\dot{W}_{\text {out }}+\sum_{\text {out }} m_{\text {out }}\left(h_{\text {out }}+\frac{V_{\text {out }}{ }^{2}}{2}+g z_{\text {out }}\right) \\
\dot{m}_{\text {in }}\left(h_{\text {in }}\right) & =\dot{W}_{\text {out }}+\dot{m}_{\text {out }}\left(h_{\text {out }}\right) \\
\dot{W}_{\text {out }} & =\dot{m}\left(h_{1}-h_{2}\right)
\end{aligned}
$$

Energy balance: for compressor, pump and fan

$$
\begin{aligned}
\dot{Q}_{\text {in }}+\dot{W}_{\text {in }}+\sum_{\text {in }} \dot{m}_{i n}\left(h_{\text {in }}+\frac{V_{\text {in }}{ }^{2}}{2}+g z_{\text {in }}\right) & =\dot{Q}_{\text {out }}+\dot{W}_{\text {out }}+\sum_{\text {out }} m_{\text {out }}\left(h_{\text {out }}+\frac{V_{\text {out }}{ }^{2}}{2}+g g_{\text {out }}\right) \\
\dot{W}_{\text {in }}+\dot{m}_{\text {in }}\left(h_{\text {in }}\right) & =\dot{m}_{\text {out }}\left(h_{\text {out }}\right) \\
\dot{W}_{\text {in }} & =\dot{m}\left(h_{2}-h_{1}\right)
\end{aligned}
$$

Example 3.8

The power output of an adiabatic steam turbine is 5 MW . Compare the magnitudes of $\Delta \mathrm{h}, \Delta \mathrm{ke}$, and $\Delta \mathrm{pe}$. Then determine the work done per unit mass of the steam flowing through the turbine and calculate the mass flow rate of the steam.

$$
\begin{array}{ll}
\text { Data }: \quad & \text { Inlet }\left(P=2 \mathrm{MPa}, \mathrm{~T}=400^{\circ} \mathrm{C}, \mathrm{v}=50 \mathrm{~m} / \mathrm{s}, \mathrm{z}=10 \mathrm{~m}\right) \\
& \text { Exit }(\mathrm{P}=15 \mathrm{kPa}, \mathrm{x}=90 \%, \mathrm{v}=180 \mathrm{~m} / \mathrm{s}, \mathrm{z}=6 \mathrm{~m})
\end{array}
$$

Solution:

State 1

State 2

$$
\begin{aligned}
\left.\begin{array}{rl}
P_{2} & =15 \mathrm{kPa} \\
x_{2} & =0.9
\end{array}\right\} \text { sat.mixture } \\
\begin{aligned}
h_{2} & =h_{f 2}+x_{2} h_{f g 2} \\
& =225.94+0.9 \quad(2372.3) \\
& =2361.01 \frac{\mathrm{~kJ}}{k_{g}}
\end{aligned}
\end{aligned}
$$

* From energy balance:

$$
\begin{aligned}
& \dot{\mathscr{Q}}_{\text {in }}+\dot{\mathscr{W}}_{\text {in }}+\sum_{\text {in }} \dot{m}_{\text {in }}\left(h_{\text {in }}+\frac{V_{\text {in }}{ }^{2}}{2}+g z_{\text {in }}\right)= \\
& \quad \dot{Q}_{\text {out }}+\dot{W}_{\text {out }}+\sum_{\text {out }} \dot{m}_{\text {out }}\left(h_{\text {out }}+\frac{V_{\text {out }}{ }^{2}}{2}+g z_{\text {out }}\right)
\end{aligned}
$$

* Solve the equation:

$$
\begin{aligned}
& \Delta h=h_{2}-h_{1}=-887.39 \frac{\mathrm{~kJ}}{\mathrm{~kg}_{g}} \\
& \Delta K E=\frac{V_{2}{ }^{2}-V_{1}^{2}}{2000}=14.95 \frac{\mathrm{~kJ}}{\mathrm{~kg}_{g}} \\
& \Delta P E=\frac{g\left(z_{2}-z_{1}\right)}{1000}=-0.04 \frac{\mathrm{~kJ}}{\mathrm{~kg}_{g}}
\end{aligned}
$$

* the work done per unit mass

$$
\begin{aligned}
W_{\text {out }} & =\left[\left(h_{1}-h_{2}\right)+\left(\frac{V_{1}^{2}-V_{2}^{2}}{2000}\right)+\left(\frac{g\left(z_{1}-z_{2}\right)}{1000}\right)\right] \\
& =887.39-14.95+0.04 \\
& =872.48 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

* The mass flow rate

$$
\dot{m}=\frac{\dot{W}_{\text {out }}}{W_{\text {out }}}=\frac{5000}{872.48}=\underline{\underline{5.73 \frac{\mathrm{~kg}}{\mathrm{~s}}}}
$$

Example 3.9

Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K . The mass flow rate of the air is 0.02 kg / s, and a heat loss of 16 $\mathrm{kJ} / \mathrm{kg}$ occurs during the process. Assuming the changes in kinetic and potential energies are negligible, determine the necessary power input to the compressor.

Solution:

* simplified energy balance:

$$
\begin{aligned}
\dot{W}_{\text {in }} & =\dot{m}\left(h_{2}-h_{1}\right)+\dot{Q}_{\text {out }} \\
& =\dot{m}\left(h_{2}-h_{1}\right)+\dot{m} q_{\text {out }}
\end{aligned}
$$

State 1

$$
\left.\begin{array}{c}
P_{1}=100 \mathrm{kPa} \\
T_{1}=280 \mathrm{~K}
\end{array}\right\} \begin{gathered}
\text { air } \\
h_{1}=280.13 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{gathered}
$$

State 2

$$
\left.\begin{array}{c}
P_{2}=600 \mathrm{kPa} \\
T_{2}=400 \mathrm{~K}
\end{array}\right\} \begin{gathered}
\text { air } \\
h_{2}=400.98 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{gathered}
$$

* Thus

$$
\begin{aligned}
\dot{W}_{\text {in }} & =0.02[(400.98-280.13)+16] \\
& =2.74 \mathrm{~kW}
\end{aligned}
$$

Throttling Valve

(a) An adjustable valve

(b) A porous plug
(c) A capillary tube

Flow-restricting devices that cause a significant pressure drop in the fluid.

Some familiar examples are ordinary adjustable valves and capillary tubes.

Example 3.10

State 1

$$
\left.\begin{array}{c}
P_{1}=8000 \mathrm{kPa} \\
T_{1}=300^{\circ} \mathrm{C}
\end{array}\right\} \begin{aligned}
& \text { sup erheated } \\
& h_{1}=2786.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

State 2

Steam enters a throttling valve at 8000 kPa and $300^{\circ} \mathrm{C}$ and leaves at a pressure of 1600 kPa . Determine the final temperature and specific volume of the steam.

$$
\left.\begin{array}{c}
P_{2}=1600 \mathrm{kPa} \\
h_{2}=h_{1}
\end{array}\right\} \text { make int erpolation }
$$

$P(k P a)$	$T\left({ }^{\circ} C\right)$	v_{f}	v_{g}	h_{f}	h_{g}
1500	198.29	0.001154	0.131710	844.55	2791
1600	T_{2}	$v_{f 2}$	$v_{g 2}$	$h_{f 2}$	$h_{g 2}$
1750	205.72	0.001166	0.113440	878.16	2795.2

\square At state 2, the region is sat. \square Specific volume at state 2 mixture

$$
T_{2}=T_{\text {sat }}=\underline{\underline{201.3^{\circ} \mathrm{C}}}
$$

\square Getting the quality at state 2

$$
\begin{aligned}
x_{2} & =\frac{h_{2}-h_{f 2}}{h_{g 2}-h_{f 2}} \\
& =\frac{2786.5-857.994}{2792.68-857.994} \\
& =0.997
\end{aligned}
$$

Mixing Chamber

The section where the mixing process takes place.

An ordinary T-elbow or a Y-elbow in a shower, for example, serves as the mixing chamber for the cold- and hot-water streams.

Mixing Chamber

- Energy Balance:

$$
\begin{aligned}
& \dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}=\dot{m}_{3} h_{3} \\
& \dot{m}_{1} h_{1}+\left(\dot{m}_{3}-\dot{m}_{1}\right) h_{2}=\dot{m}_{3} h_{3} \\
& \dot{m}_{1}\left(h_{1}-h_{2}\right)=\dot{m}_{3}\left(h_{3}-h_{2}\right) \\
& \quad \dot{m}_{1}=\dot{m}_{3}\left(\frac{h_{3}-h_{2}}{h_{1}-h_{2}}\right)
\end{aligned}
$$

\square the minimum mass flux of the water so that the water does not completely vaporize

$$
\begin{aligned}
\dot{m}_{w} & =\frac{m_{s} C_{p, s}\left(T_{1 s}-T_{2 s}\right)}{\left(h_{2 w}-h_{1 w}\right)} \\
& =\frac{100(1.25)(450-350)}{2794.2-88.61} \\
& =4.62 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{aligned}
$$

[the rate of heat transfer

$$
\begin{aligned}
\dot{Q}_{w} & =\dot{m}_{w}\left(h_{2 w}-h_{1 w}\right) \\
& =4.62(2794.2-88.61) \\
& =12.5 \mathrm{MW}
\end{aligned}
$$

Supplementary Problems 3

1. Air flows through the supersonic nozzle. The inlet conditions are 7 kPa and $420^{\circ} \mathrm{C}$. The nozzle exit diameter is adjusted such that the exiting velocity is $700 \mathrm{~m} / \mathrm{s}$. Calculate (a) the exit temperature, (b)the mass flux, and (c) the exit diameter. Assume an adiabatic quasiequilibrium flow.
2. Steam at 5 MPa and $400^{\circ} \mathrm{C}$ enters a nozzle steadily velocity of $80 \mathrm{~m} / \mathrm{s}$, and it leaves at 2 MPa and $300^{\circ} \mathrm{C}$. The inlet area of the nozzle is $50 \mathrm{~cm}^{2}$, and heat is being lost at a rate of $120 \mathrm{~kJ} / \mathrm{s}$. Determine (a) the mass flow rate of the steam, (b) the exit velocity of the steam, and (c) the exit area nozzle.
3. Steam enters a turbine at 4000 kPa and $500^{\circ} \mathrm{C}$ and leaves as shown in Fig A below. For an inlet velocity of $200 \mathrm{~m} / \mathrm{s}$, calculate the turbine power output. (a)Neglect any heat transfer and kinetic energy change (b)Show that the kinetic energy change is negligible.

4. Consider an ordinary shower where hot water at $60^{\circ} \mathrm{C}$ is mixed with cold water at $10^{\circ} \mathrm{C}$. If it is desired that a steady stream of warm water at $45^{\circ} \mathrm{C}$ be supplied, determine the ratio of the mass flow rates of the hot to cold water. Assume the heat losses from the mixing chamber to be negligible and the mixing to take place at a pressure of 150 kPa .
